

2025 INRIX Global Traffic Scorecard

Bob Pishue, Transportation Analyst
December 2025

KEY FINDINGS

- Istanbul, Turkey tops the list of the most-congested urban areas for the second straight year in the INRIX 2025 Global Traffic Scorecard. Traffic delays jumped 12% over 2024 to 118 hours lost.
- The typical U.S. driver lost 49 hours to traffic congestion, a six-hour jump over 2024, which resulted in \$894 worth of time lost per driver. In the U.K., drivers lost an average of 59 hours commuting to work, down three hours from 2024. Congestion cost U.K. drivers on average £822 (PPP) in lost time, whereas a typical German driver lost 47 hours in traffic jams, a four-hour increase from 2024, equal to 750 € (PPP) per driver.
- Congestion cost the U.S. more than \$85 billion in 2025, an 11.3% increase from 2024. Comparatively, U.K. drivers lost £11.0 billion, down by 5.6% from 2024, while congestion cost drivers in Germany 5.3 billion € in time lost, up 8.2% from the prior year.
- In the U.S., Chicago took the top spot with 112 hours lost, costing the typical driver \$2,063 in lost time, and the city as a whole \$7.5 billion. In the U.K., London remained #1 despite a 10% reduction in delay from 2024. Drivers there lost about 91 hours to traffic in 2025, equal to £1,252. Across London, this adds to £5.2 billion in lost time. In Germany, Cologne took the top spot with 67 hours in lost time, equal to £919 per driver and 188 million € to the city.
- Truck trips across the U.S.-Canadian border are down 4.5% between January and August. INRIX truck trips are strongly correlated with truck border shipments counted by the Customs and Border Patrol, ensuring a quicker, statistically-sound way to monitor U.S. trade policy impacts. INRIX expects a slight decrease through Q3 during the U.S. Government Shutdown which ended in November.

TABLE OF CONTENTS

Introduction	4
Traffic Safety: NHTSA Fatality Rates H1 2025	5
Study: SafeTREC finds on San Francisco Speed Camera Effects	7
Study: UMD Analyzed Palisades Wildfire Evacuation Routes	9
Tsunami Advisory Traffic Patterns Across Hawaii	10
Tracking Trade Policy Impacts Through Truck Trips	11
Data and Methodology	12
Key Definitions	13
Global Analysis & Ranking	14
United States Analysis & Ranking	16
Ranking	17
Busiest Corridors	19
Europe Analysis & Ranking	20
Ranking	21
United Kingdom Analysis & Ranking	22
Ranking	22
Busiest Corridors	23
Germany Analysis & Ranking	24
Ranking	25
Busiest Corridors	25
Conclusion & Commentary	26

INTRODUCTION

The 2025 INRIX Global Traffic Scorecard includes transportation data and trends among the 942 urban areas analyzed worldwide. The findings provide road authorities, transportation planners, engineers, policymakers, and the public the ability to monitor and measure traffic in their respective areas.

Traffic is the movement of people, goods and services on the road network. Traffic congestion occurs when demand for road travel exceeds the supply of road space, leading to increased delays and costs associated with congestion. While growing traffic volumes indicate increasing economic activity, the negative externality of traffic *congestion* has a negative impact to the economy.

Of the urban areas studied, 62% (585) saw increased traffic delays compared to 2024, while 26% (245) experienced a reduction in delay. About 12% (111) of urban areas observed no significant change in traffic congestion levels compared to 2024.

In the U.S., these delays cost the typical driver more than \$894 in lost time. Across the country, this means more than \$85 billion was lost to traffic jams.

The typical driver in the U.K. and Germany, on the other hand, lost £822 and 750 € to traffic jams (Purchasing Power Parity, PPP), respectively. Congestion cost the U.K. as a whole £11.0 billion, while Germany lost 5.3 billion €.

TREND

Interestingly, some large, dense urban areas saw no significant increase in congestion, and even some reductions. In North America, New York, NY, Los Angeles, CA, and Toronto, ON saw decreases in traffic delays. In Western Europe, a similar pattern emerged with London, U.K. and Paris, FR. Yet urban areas in Germany and Italy tended to have growing traffic delays. In Asia and the Middle East, traffic congestion mostly increased, save for a few urban areas like Jakarta, ID.

Fortunately, traffic fatalities in the U.S., U.K. and Germany continue to sit at or below their pre-COVID lows, though it took until the first half of 2025 to solidify. Due to the U.S. Government shutdown, the [latest data available is from H1 2025](#).

The year saw major policy shifts in U.S. transportation that are noteworthy. New York, NY, for example, has continued to run the first cordon-based tolling program in the United States. While opposition was strong, and the tolling program [remains under federal pressure](#), it continues to operate.

In addition, the Trump Administration threw a wrench into the California High Speed Rail program by [revoking \\$4 billion](#) in grant funding. In some states like California and Illinois, public transport agencies averted their respective fiscal cliffs by securing state money to spend on transit. This continues to signal that state transportation tax and fee sources will be the primary source of transportation revenue going forward for the majority of the population.

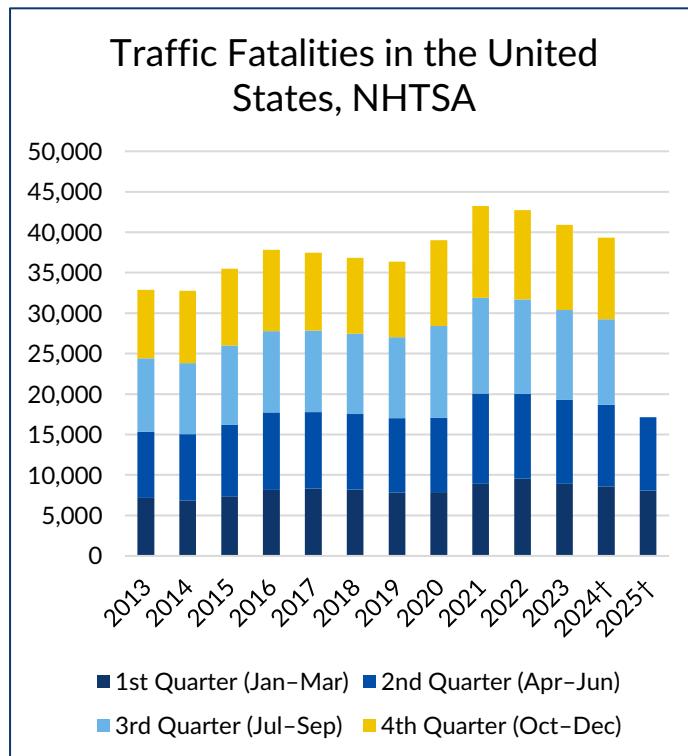
2025 Key Statistics:

U.S.

- 49 Hours Lost
- \$894 Cost per Driver
- \$85.8 B Cost to Country

U.K.

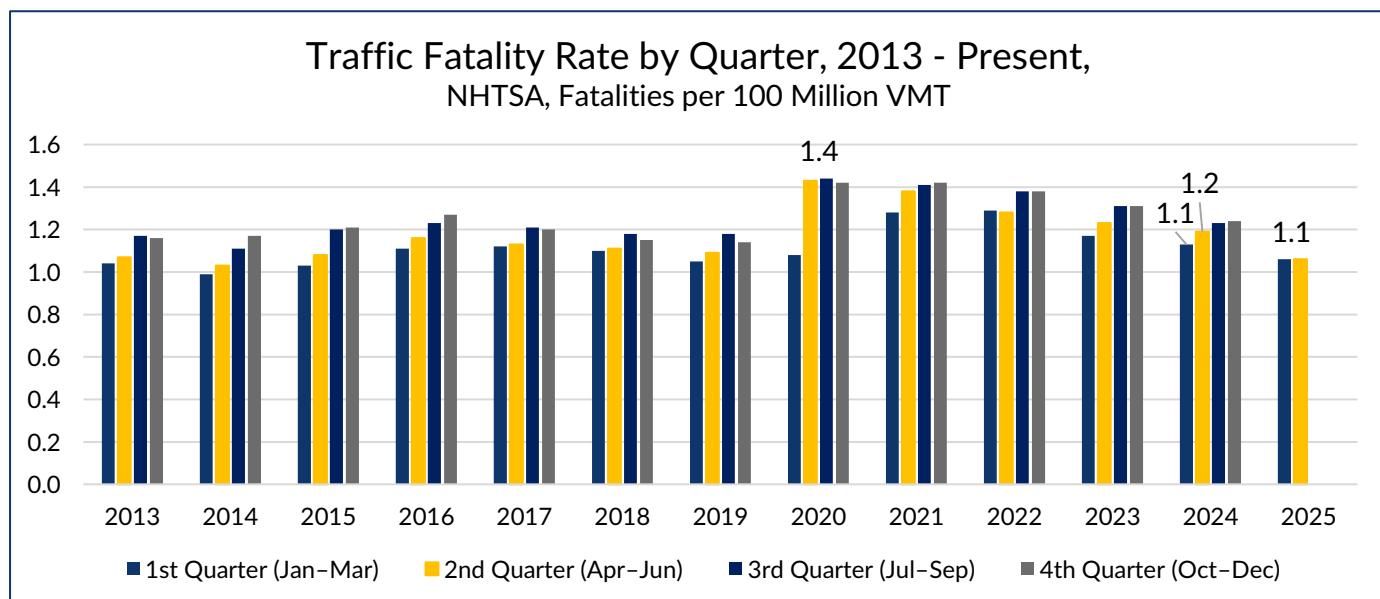
- 59 Hours Lost
- £822 Cost per Driver
- £11.0 B Cost to Country


Germany

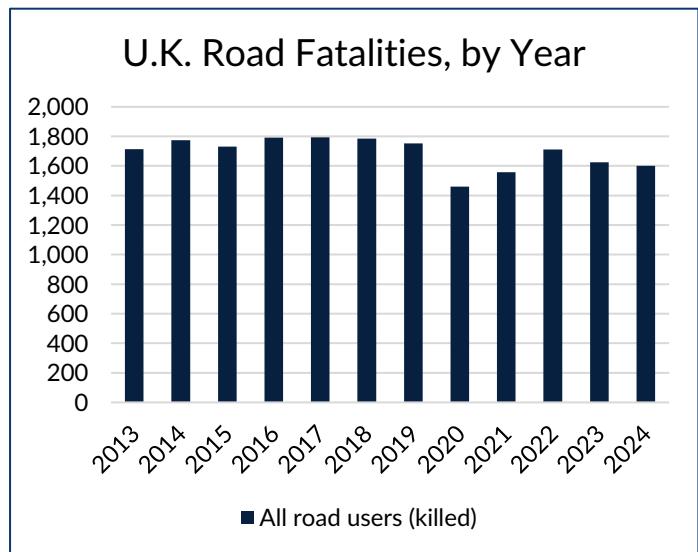
- 47 Hours Lost
- 750 € Cost per Driver
- 5.3 € B Cost to Country

Traffic Fatalities in the First Half of 2025 Fall to Pre-COVID Levels - Fatality Rate Falls to 2014 Level

Over the past decade, traffic fatalities in the United States have continued to rise, from 32,893 in 2013 to 43,230 in 2021, at the height of the COVID-19 Pandemic. Since then, traffic fatalities and fatality rates have slowly declined but still hovered above their 2024 level – demanding attention from all levels of government and the private sector.


According to the latest statistics, NHTSA (National Highway Traffic Safety Administration) estimated that in the first half of 2025, [17,140 fatalities have occurred on U.S. roadways](#), similar to numbers seen in 2019 and 2020.

Over the past decade, traffic fatalities in the United States have continued to rise, from 32,893 in 2013 to 43,230 in 2021, at the height of the COVID-19 Pandemic. Since then, traffic fatalities and fatality rates have slowly declined but still hovered above their 2024 level – demanding attention from all levels of government and the private sector.


According to the latest statistics, NHTSA estimates that in the first half of 2025, 17,140 fatalities have occurred on U.S. roadways, similar to numbers seen in 2019 and 2020.

Besides the actual fatality numbers, we also see that the fatality rate has dropped in the first half of 2025. According to the latest data, the fatality rate fell from 1.16 in H1 2024 to 1.06 in H1 2025. Further, the fatality rate has now hit pre-COVID levels, falling from a high of 1.33 fatalities per 100 million VMT in H1 2021.

2025 Traffic Fatalities (Cont.)

While the U.S. grappled with a four-year spike in road fatalities, many countries in Europe actually saw fatalities drop. In the U.K. for example, traffic fatalities *fell* throughout the pandemic. In 2019, 1,752 people were fatally injured on U.K. roads. Yet by 2024, road fatalities fell 8.5% to 1,602 in 2024.

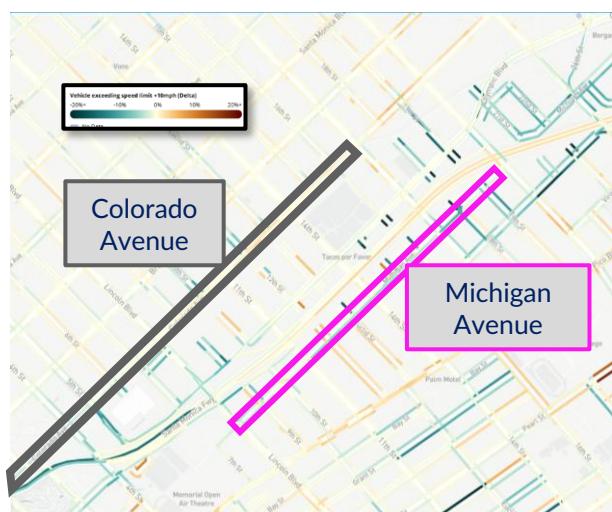
In addition, [the U.K. fatality rate per 100 million VMT](#) fell to 0.47 in 2024. Compared to the U.S.' 1.06 fatality rate per 100 million VMT, in the U.K. are 55% lower. Further, the U.K. fatality rate is 27% lower than that of Germany's [0.64 per 100 million VMT](#).

In general, transportation professionals account for the large gap due to many factors including the following: road design, speed enforcement, quality of road infrastructure, licensing requirements, drunk and distracted driving penalties, etc. All of which may combine to form a safer travel environment for the movement and people and goods.

Study: Speeding and Automated Speed Enforcement Data

It should be no surprise that vehicle speeds (along with vehicle weight, design, height and other features) play a significant role in the outcome of a crash. In the U.S., NHTSA, estimates that [speeding is a factor in 29%](#) of road deaths. That's why in late 2024 multiple cities and jurisdictions lowered speed limits, including large reductions in Los Angeles, CA, New York, NY, San Diego, CA, and Tucson, AZ, to name a few.

INRIX investigated the early signs of Santa Monica's new program, which aims to lower speed limits on multiple streets throughout the city. Two such examples are Colorado Avenue between Ocean Avenue and 17th Street, and Michigan Avenue between Lincoln Boulevard and 19th Street.


On both of these corridors traffic volumes dropped considerably, though speed results are mixed. On Colorado Avenue, speeds generally stayed the same despite the signage, while on Michigan Avenue speeds

dropped significantly. This could be, in part, due to traffic congestion – as even the reduced speed limit on Colorado Avenue is above the congested speed during daylight hours just as they were before.

On Michigan Avenue, excessive speeding (traveling more faster than 35 mph) dropped significantly year over year, going from six percent of vehicles to one percent.

Besides lowering speed limits, cities across the globe have either begun automated enforcement cameras or have expanded their use in an effort to crack down on excessive speeding.

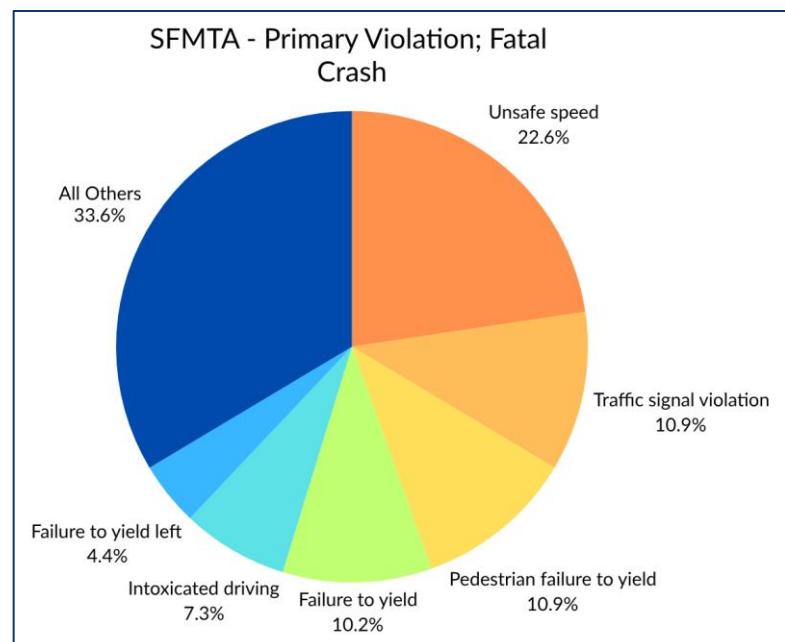
In the U.S., a number of cities are implementing speed cameras after their respective state legislatures allowed it, [like California](#).

Speeding (Cont.)

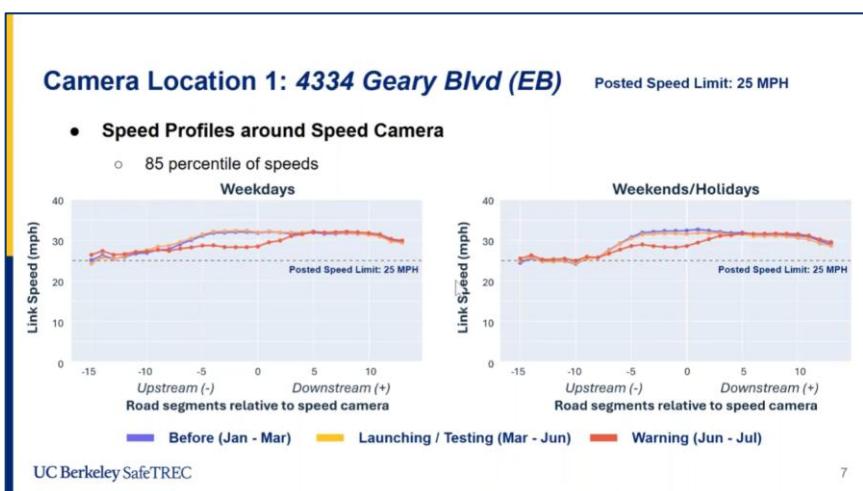
Minneapolis, MN and Baltimore, MD are some larger cities that have also implemented automated enforcement, along with some smaller cities like Redmond, WA and Glenwood Springs, CO.

In Europe, Dublin, IRL, just installed the first permanent speed camera in August 2025, after years of mobile vans. They are installing more red-light and bus-lane cameras. New cameras were also rolled out in Amsterdam, NDL, Madrid and Barcelona, ESP.

UC Berkeley SafeTREC finds on San Francisco Speed Camera Effects


A recent case study on the trend of automated enforcement comes from the City and County of San Francisco. The San Francisco Municipal Transportation Agency (SFMTA) is one of the six cities that implemented automated enforcement after the passing AB645. The SFMTA currently produces traffic safety data, including collision trends, pedestrian involved crash statistics, and other factors into serious injury and fatal collisions.

They note that in 2000, 44 fatal collisions occurred, and during the last year of data available, 43 people died in traffic crashes, despite decades of fatalities falling. While they continue to investigate precisely why fatalities have increased, they do note that unsafe speeds are the top cause for injury-crashes at 18% and fatal crashes at 20%, highlighting the impact speed has when crashes occur.


MetroLab, now part of the Federation of American Scientists, partnered with INRIX to provide datasets to universities to study key policy areas in cities. In partnership with the SFMTA, the University of California Berkeley's SafeTREC program utilized INRIX data to analyze driver behavior around the cameras in San Francisco and view travel conditions before and after camera installation to analyze driver behavior.

They found that traffic speeds fell in both locations analyzed. In addition, researchers noticed significant detouring to avoid the camera. Their analysis also showed a return to speeding once the zone was passed.

Automated enforcement cameras are highly debated around the country, so it is critical that data be collected, analyzed, and made available to the general public to determine whether these programs should stay in place, be removed, or be expanded.

2003-2004 San Francisco Traffic Crashes Report

Study: Palisades Wildfire Evacuation Routes Analyzed

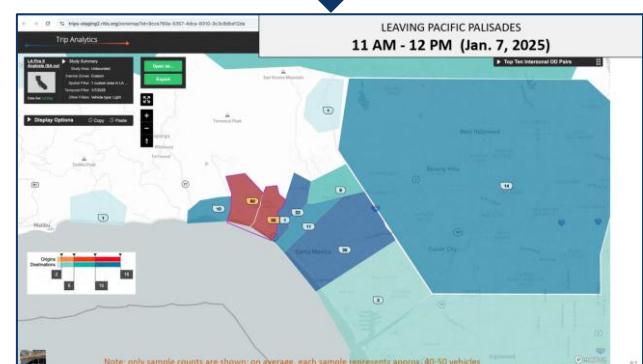
On January 7, 2025, a California wildfire threatened the Pacific Palisades, a Westside residential neighborhood in the Los Angeles area surrounded by the Santa Monica Mountains. The Santa Ana winds, coupled with drought conditions, caused the fire to spread rapidly, and officials ordered mandatory evacuations. The fire left 12 dead and has a total estimated damage and economic loss in the [hundreds of billions of dollars](#).

Due to the rapid spread of the fire, residents were unable to escape by car, as the road network was overwhelmed by traffic volumes. This lead many to lead to escape on foot.

University of Maryland Analysis Reveals Key Chokepoints

The University of Maryland tapped INRIX data to analyze traffic data around the Palisades Fire in an after-action review. Their findings should help educate planners, government officials and citizens to improve outcomes in the future.

The research group used various analytics tools to match the travel patterns with the physical infrastructure. Understanding the demand for travel allows transportation engineers and safety experts the ability to reduce friction along the roadway during an evacuation.


Their analysis begins around 11:00 am, when the fire started. In just 30 minutes, traffic begins to degrade heading Eastbound on parts of Sunset Boulevard. Noting the fire raging southward from the North, Northwest, most of the traffic responded by traveling in the Eastbound direction.

Within 15 minute the section of the Eastbound corridor to Temescal Canyon slows significantly. That's where traffic comes to a bottleneck, and the researchers analyze the role that bottleneck in traffic conditions, especially on Sunset Boulevard as travelers faced the choice of heading Southbound on Temescal or continuing on Sunset Boulevard.

The study results should help guide transportation planners, engineers, and safety experts to not only improve the bottlenecked locations and other capacity constraints, but also to any area that's affected by wildfires.

Quick Facts:

- Due to speed and wind direction, the Palisades Fire spread quickly with mandatory evacuations.
- The bottleneck at Sunset Boulevard and Temescal Canyon Road played a key role as people continued to evacuate East.

Natural Disaster Traffic Patterns Show Effectiveness of Warnings

On July 29, 2025, an 8.8 magnitude earthquake struck off Russia's eastern coast at 7:25pm EDT (1:25pm HST). Tsunami Advisories were sent to the western coastal states of the United States and Hawaii, while a Tsunami Warning was issued for parts of California.

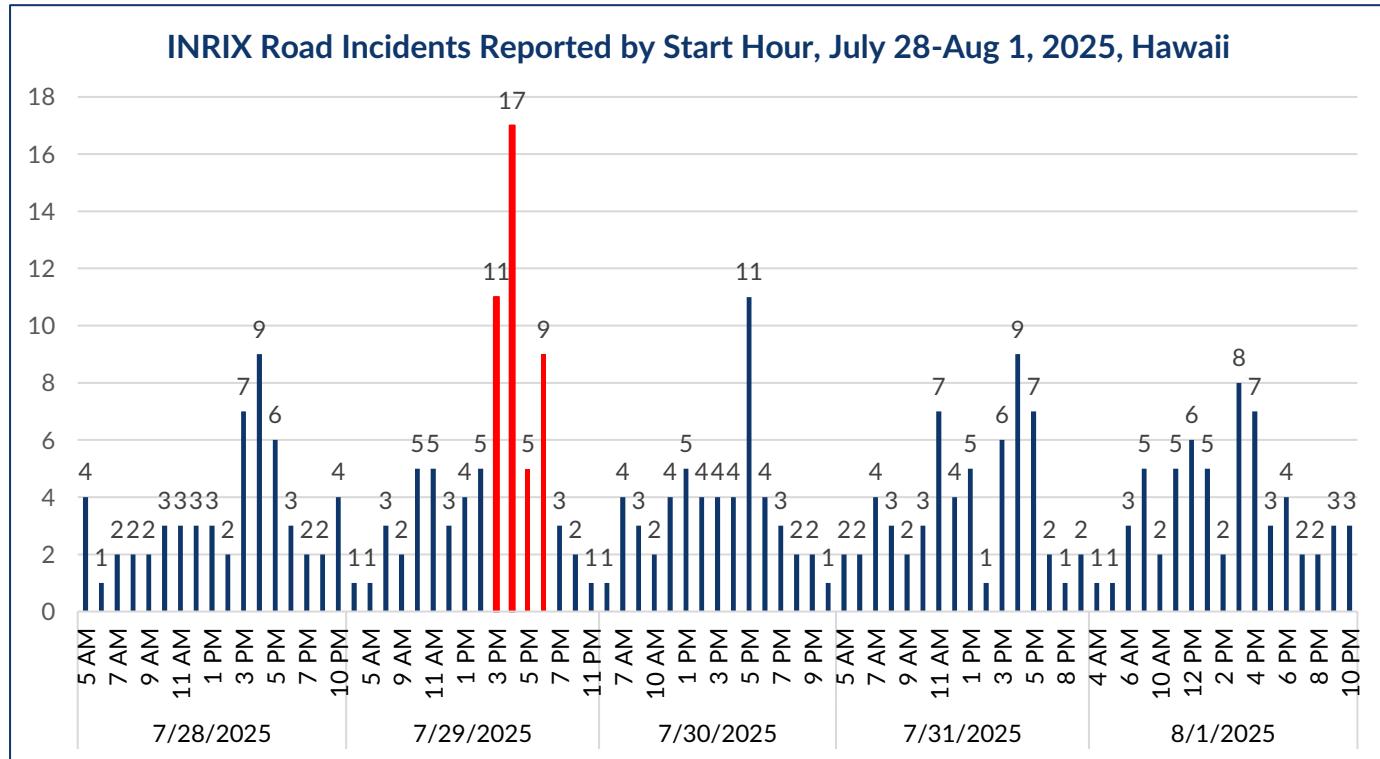
Hawaiians are required to evacuate under Tsunami Advisories; therefore, an adequate road and highway network is critical to the movement of people and goods during natural disasters.

INRIX analyzed the Tsunami Advisories and Warnings along the country's Pacific coastlines.

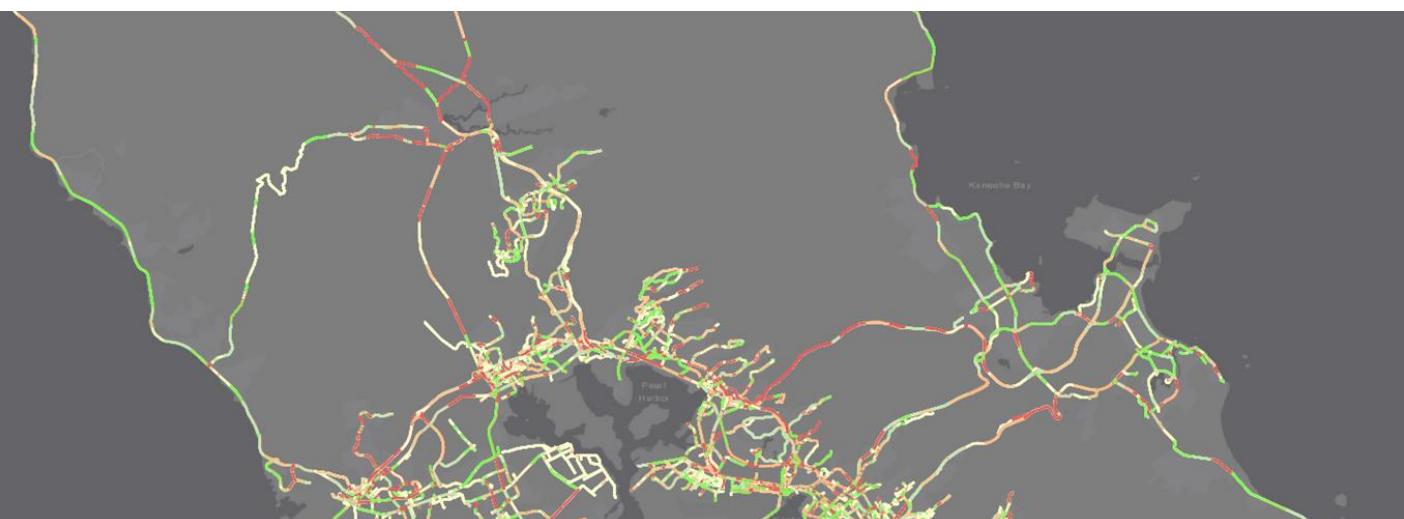
Quick Numbers:

- Evacuation resulted in 20% decrease in travel speeds on all Hawaii Roads after Tsunami Advisory; 25% drop on coastal roads
- 79% increase in unplanned, reported INRIX road incidents in the 3-7:00pm period.

U.S. Mainland & Hawaiian Response


INRIX analyzed trips to and from the California Coast to analyze whether travelers hit the road after the Tsunami Warning was issued. We found overall trip trends across the coast do not signify any significant shifts in travel behavior. Travel speeds around Washington's coastline saw minimal change as well.

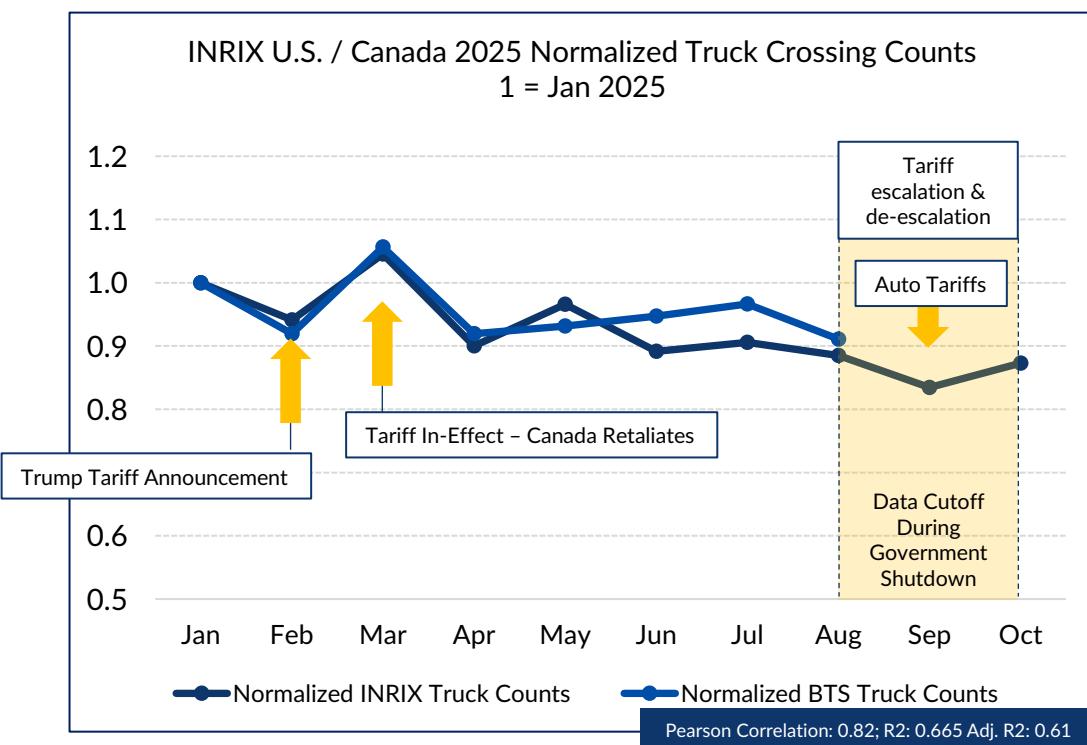
Hawaii, however, due to mandatory evacuations, saw significant shifts in traffic patterns and behavior. To start, travel speeds dropped 20% beginning at 2:30pm, gradually returning to normal at approximately 7:30pm. Further, average speeds on coastal roads dropped 25% in the hours after the Tsunami Advisory was issued.



Natural Disaster Traffic Patterns (Cont.)

In addition, INRIX Incidents logged a sharp increase in the number of road incidents occurring after the Tsunami Warning. At approximately 1.5 hours after the Tsunami Advisory was made, INRIX recorded a 79% increase in unplanned incidents on the roadway. Learning how to reduce and minimize the impacts of incidents is key to ensuring safe evacuation in the case of an emergency.

Very soon after the Tsunami Warning was issued, Hawaiians heeded the call and headed for higher ground. And while the impact of the earthquake and tsunami were relatively moderate, the traffic data revealed some opportunities to work to improve response times, reduce traffic congestion, and provide safe orderly travel conditions on evacuation routes.



Tracking Trade Policy Impacts Through Truck Trips

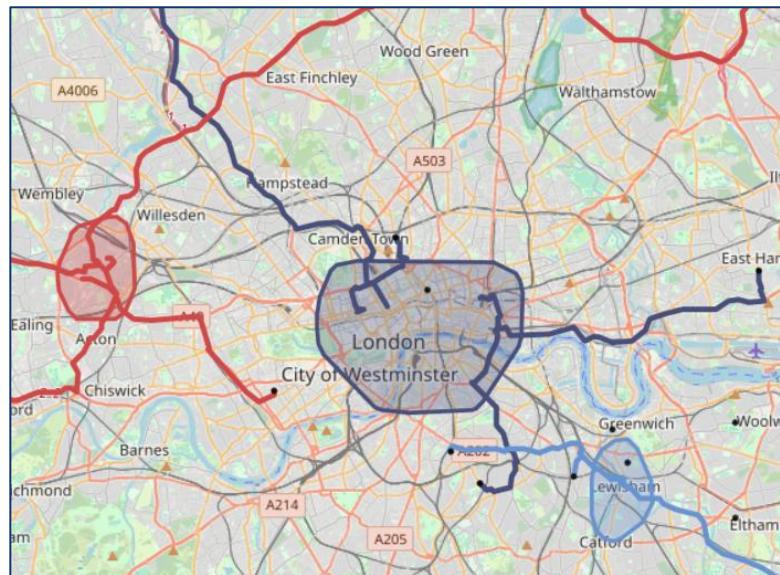
When the U.S. trades with Canada or Mexico, the vast majority of trade flows are served by trucks rather than other modes. Trucks carry 56% (\$423 billion) of U.S.-Canada trade flows and more than 72% (\$1.0 trillion) of trade flows with Mexico. Together, trucks carry nearly two-thirds of all freight flows in North America. In order to gauge trade policy or view industry-specific impacts of tariffs, monitoring what amounts to more than \$1.4 trillion in trade is critical to track and understand the market's reaction.

Upon entering office in January 2025, President Donald Trump imposed trade tariffs on other countries, requiring exporting countries to pay a duty on some products crossing the U.S. border. On February 1, 2025, President Trump announced his plan for a 25% tariff on Canada and Mexico, which partially went into effect March 4, 2025. Throughout Spring 2025 the U.S. added automaker import tariffs while Canada threatened retaliation and imposed tariffs on the U.S.

Yet by September 2025, Canada dropped most retaliatory tariffs, though some tariffs on automobiles and commodities still stand. Below is both the INRIX Truck Count and the Border Patrol Truck Counts between January – August 2025.

In March, we see a sharp increase in truck crossings between the U.S. and Canada, likely in preparation for tariffs and the projected higher prices that result. Then, as tariffs went into effect and negotiations got ironed out, trade activity largely flatlines. Per the Customs and Border Patrol crossing counts, the number of trucks crossing the border dropped 4.5% in 2025 over the same period last year (January-August.)

Unfortunately, however, data releases slow, or even stop, during a federal government shutdown. That data gap left analysts searching for other high-quality sources to help in their decision-making. Based on INRIX data, we estimated a slight drop further through October 2025. Having up-to-date, high-quality information helps businesses make key decisions for their clients.


Monitoring INRIX Truck Trips allows investors, market analysts, and manufacturers insights into macro trends spanning multiple industries.

[Learn more about INRIX Trips, here.](#)

DATA & METHODOLOGY

The INRIX 2025 Global Traffic Scorecard utilizes an up-to-date methodology to better understand movement in urban areas across the world. The 2025 Scorecard continues to include travel delay comparisons, last mile speeds and travel trends based on the dynamic commuting patterns within each metro area, providing unique insights into each urban area's unique commuting characteristics.

Commute times are calculated by looking exclusively at the time it takes to get to and from major employment centers within an urban area from surrounding commuting neighborhoods. Our newest methodology includes accurate estimates of commuting distances using actual, observed trips. Unlike other calculations that assume a certain distance or summarizes all roads in an area, the 2025 Scorecard utilizes precise calculations to determine the most popular commute routes and their travel speeds, reflecting the typical commuter's experience on the roadway.

Economic costs are calculated based on the following hourly values of time, which were based on U.S. Federal Highway Administration's *Revised Departmental Guidance on Valuation of Travel Time for Economic Analysis, 2016*, adjusted for inflation: \$18.42 per hour in the U.S., £13.76 per hour in the U.K. and 13.71 € per hour in Germany. Individual urban areas may have higher, or lower, values of time depending on local economic conditions. The values have been converted to the local currency based on purchasing power parity (PPP).

The 2025 Scorecard values time loss by analyzing peak speed and free-flow speed data for the busiest commuting corridors and sub-areas as identified by origin and destination patterns unique to that area. Employing free-flow data enables a direct comparison between peak periods and serves as the basis for calculating time loss. Total time lost is the difference in travel times experienced during the peak periods compared to free-flow conditions on a per driver basis. In other words, it is the difference between driving during commute hours versus driving at night with little traffic.

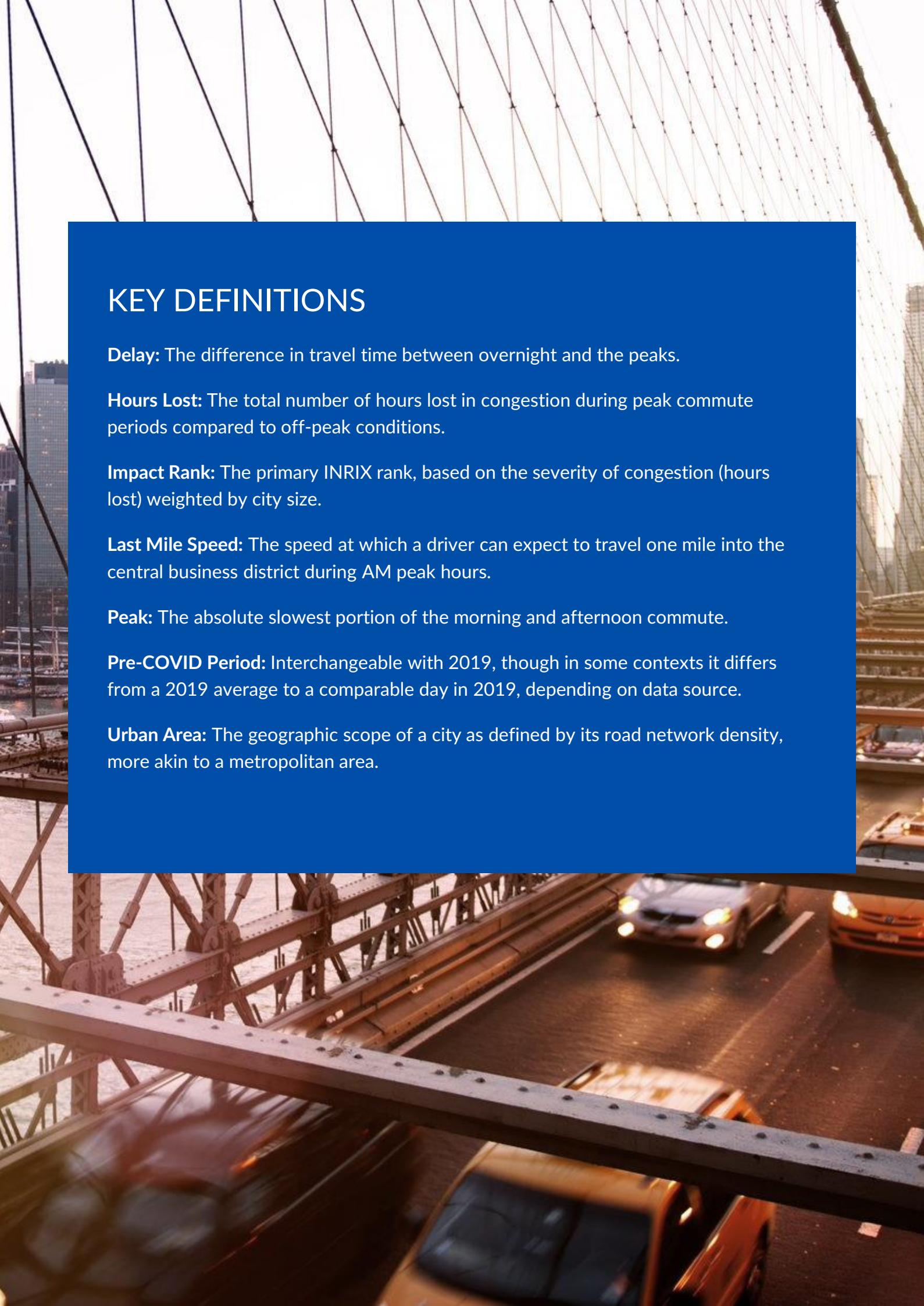
Data used to complete the 2025 Scorecard spans from 2023 through Q3 2025. Fourth-quarter estimates are calculated based on historical and seasonal trends for each urban area. The Scorecard incorporates multiple years of data for a complete and comprehensive look at congestion and mobility. A multi-year approach enables the identification of trends in the world's largest urban areas and provides a basis for comparison.

The "Busiest Corridors" list incorporated observed trip volumes along thousands of corridors across the U.S., U.K., and Germany, allowing INRIX to scale delay to determine which roads not only have the most congestion for the typical driver, but also how many travelers are affected by that specific roadway's congestion. Selection of the busiest corridors is based off scaled delay, while time lost at peak periods is the height of delay at the peak hour specific to each corridor.

KEY DEFINITIONS

Delay: The difference in travel time between overnight and the peaks.

Hours Lost: The total number of hours lost in congestion during peak commute periods compared to off-peak conditions.


Impact Rank: The primary INRIX rank, based on the severity of congestion (hours lost) weighted by city size.

Last Mile Speed: The speed at which a driver can expect to travel one mile into the central business district during AM peak hours.

Peak: The absolute slowest portion of the morning and afternoon commute.

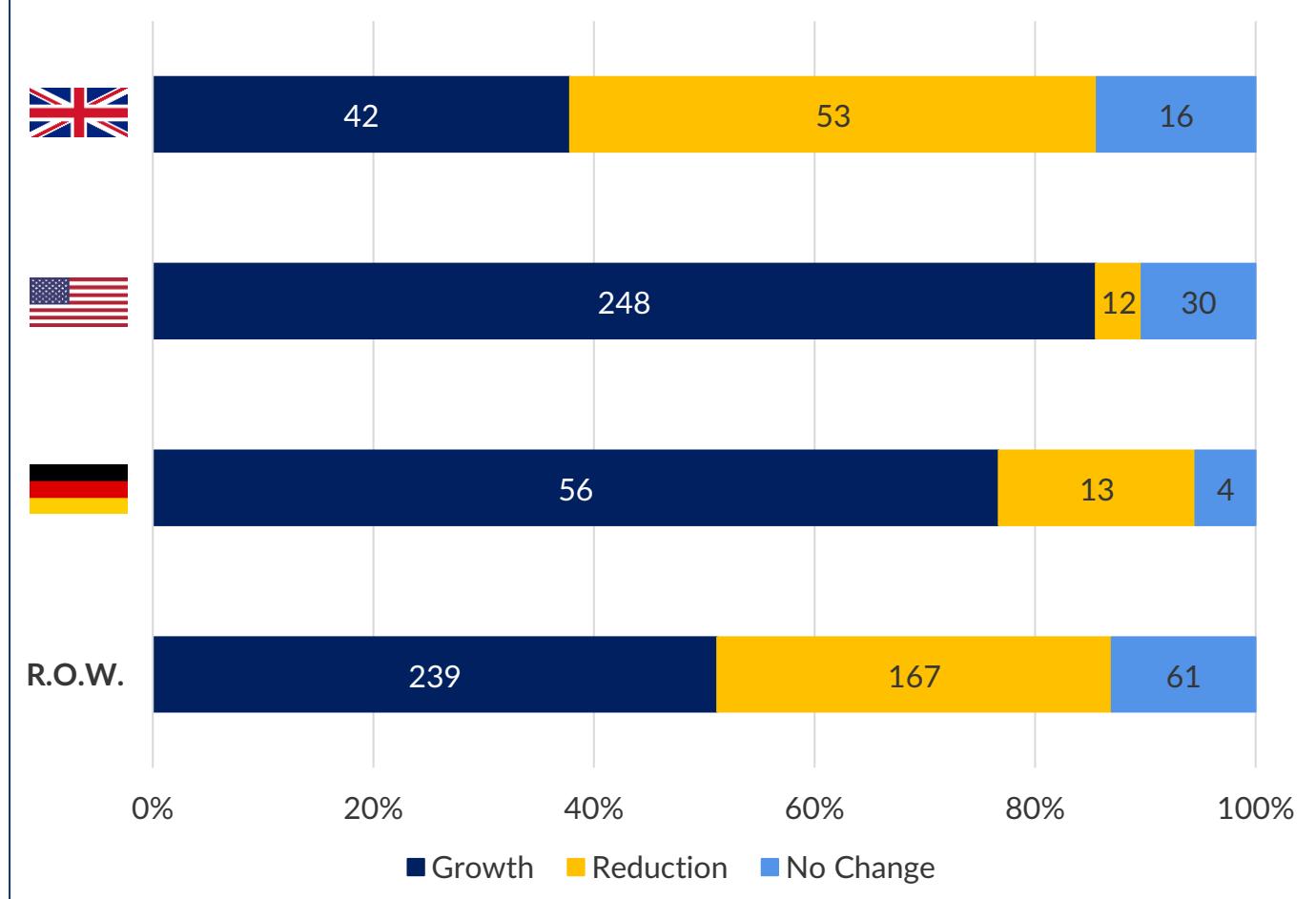
Pre-COVID Period: Interchangeable with 2019, though in some contexts it differs from a 2019 average to a comparable day in 2019, depending on data source.

Urban Area: The geographic scope of a city as defined by its road network density, more akin to a metropolitan area.

GLOBAL ANALYSIS & RANKING

Istanbul, Mexico City, Chicago, New York, and Philadelphia comprise the most-congested urban areas in the 2025 Global Traffic Scorecard by Impact Rank (IR). The IR captures the aggregate influence of congestion relative to population.

These results are due to their large populations and the increasing vehicular demand on their respective road networks. As the demand for vehicular travel continues to grow faster than the supply of roadway, traffic congestion and delay tend to grow.


On the individual commuter level, hours lost reflects the impact of congestion on the typical commuter on the roadway. In terms of hours lost, Istanbul, Chicago, and Mexico City drivers experienced the most delay, at 118, 112, and 108 hours, respectively.

Big movers in 2025 include Philadelphia, PA, moving up 8 spots from 13th in 2024 to 5th in 2025. Dublin, Ireland moved up four spots to 11th. Yet urban areas in Turkey made the biggest jumps into the top 25, with Ankara and Izmir making their debut on the list at 20th and 21st respectively. It's also notable that some of the biggest cities in the U.S. and Europe fell in the rankings, with New York, Los Angeles, London, and Paris each falling two spots in 2025. Warsaw, Poland, fell off the top 25 list, landing 30th in 2025.

Top 100 By the Numbers:

- Out of the top 100 urban areas, year-over-year delay increased in 68 while 26 saw fewer delays. Six areas were unchanged.
- Twenty-three urban areas out of the top 100 experienced double-digit growth in delays

Count of Urban Areas by Y.O.Y. Change in Delay, by Geography

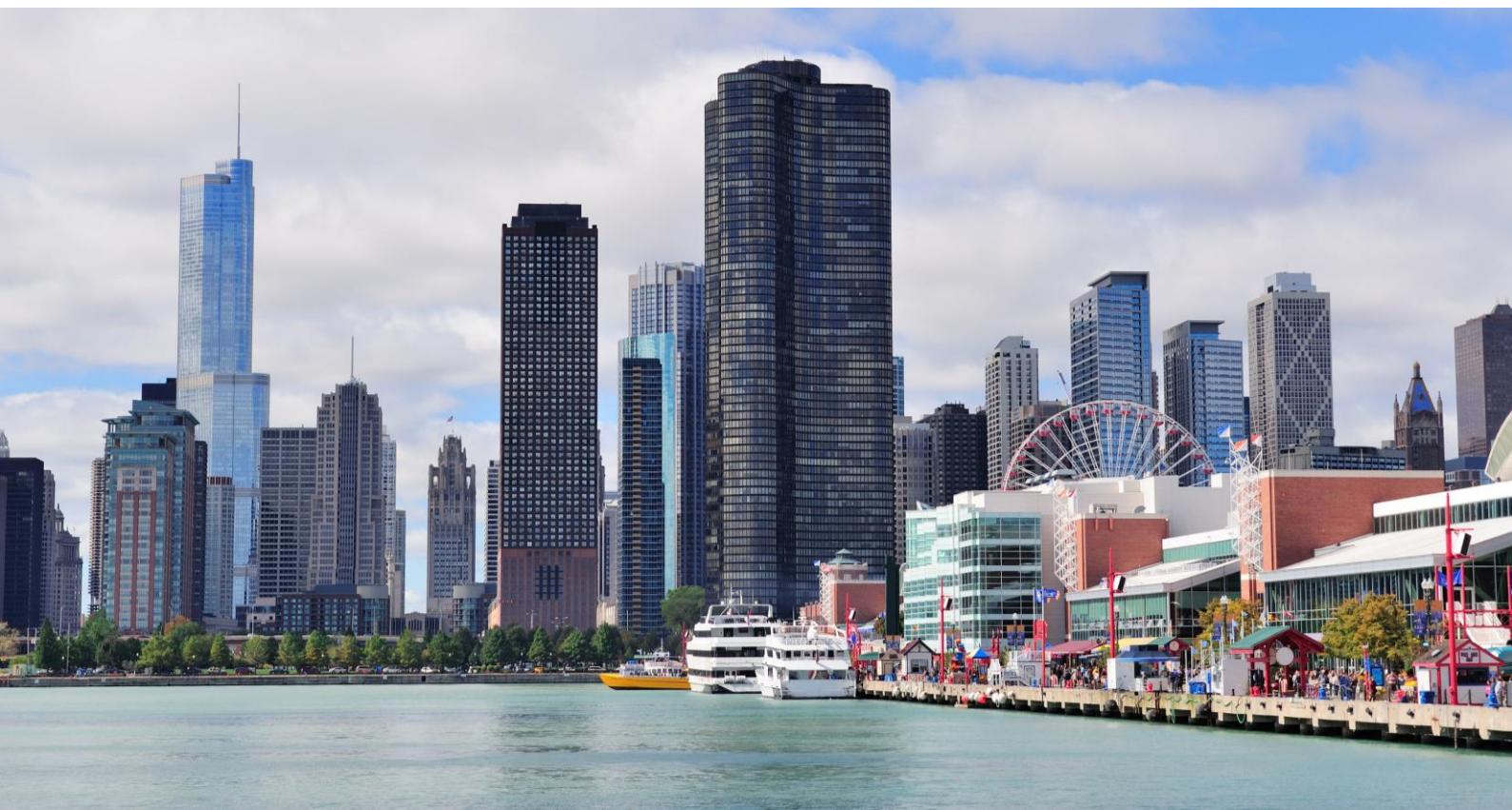
2025 Impact Rank (2024 Rank)	Urban Area	Country	2025 Hours Lost	2024 Hours Lost	Delay Change	Downtown Speed (mph)
1 (1)	Istanbul	TUR	118	105	12%	13
2 (4)	Mexico City	MEX	108	97	11%	11
3 (3)	Chicago IL	USA	112	102	10%	9
4 (2)	New York City NY	USA	102	102	0%	11
5 (13)	Philadelphia PA	USA	101	77	31%	10
6 (9)	Cape Town	ZAF	96	94	2%	11
7 (5)	London	GBR	91	101	-10%	11
8 (6)	Paris	FRA	90	97	-7%	11
9 (7)	Jakarta	IDN	83	89	-7%	11
10 (8)	Los Angeles CA	USA	87	88	-1%	17
11 (15)	Dublin	IRL	95	81	17%	11
12 (12)	Boston MA	USA	83	79	5%	10
13 (11)	Bangkok	THA	76	74	3%	12
14 (10)	Brisbane	AUS	81	84	-4%	18
15 (14)	Miami FL	USA	75	74	1%	14
16 (19)	Atlanta GA	USA	75	65	15%	14
17 (16)	Rome	ITA	76	71	7%	13
18 (17)	Houston TX	USA	70	66	6%	14
19 (22)	Washington DC	USA	70	62	13%	11
20 (28)	Ankara	TUR	71	60	18%	17
21 (67)	Izmir	TUR	72	47	53%	16
22 (23)	Seattle WA	USA	68	63	8%	14
23 (21)	Melbourne	AUS	66	65	2%	13
24 (24)	Milan	ITA	67	64	5%	14
25 (18)	Brussels	BEL	71	74	-4%	10

UNITED STATES ANALYSIS & RANKING

In 2025, Chicago (112 hours lost), New York (102), and Philadelphia (101) took the top spots in the United States Impact Ranking. Chicago overtook New York as delays in the Windy City jumped 10% year over year, while delay in the New York Urban Area remained flat.

Both Baltimore and Philadelphia saw the largest percentage increases in the top 25 with both increasing 31% over last year. The changes pushed Philadelphia up two spots while Baltimore remained at 13th. Double digit percentage increases were seen in 13 of the top 25 urban areas.

New York particularly stood out as the city implemented congestion pricing this year. Five New York roads made the top 25 busiest corridor list in 2024 – of which only one remains in 2025, showing changes in demand and congestion have shifted significantly since the congestion pricing program implementation. While we have seen slowdowns in some other dense, Western cities like London and Paris, congestion pricing likely played a role in a regional context.


Traffic congestion continued to mount nationwide, causing the typical driver to lose 49 hours in 2025 due to traffic jams, up six hours from 2024, increasing the cost of congestion to \$894 per driver, equal to an 11% increase over 2024.

Across the country, drivers lost around 4.7 billion hours due to traffic last year, equal to about 2.2 million full time jobs worth of productivity, at 2,080 hours per job per year. This cost the country nearly \$86 billion in lost time.

As of August 2025 (the last updated data prior to the government budget shutdown) transit ridership was up a modest 3% over 2024 levels, with 5.1 billion transit trips taken since the start of the year. However, transit ridership continued to lag pre-COVID 2019 levels by 20%, indicating that remote work is still competing with transit trips as a commute mode..

United States Findings

- Time Lost: 49 hours, up 6 from 2024
- Cost to Driver: \$894, up \$91 from 2024
- Cost to Country: \$85.8 billion

2025 Impact Rank (2024 Rank)	Urban Area	2025 Hours Lost (2024)	Delay Change	2025 Cost per Driver	2025 Cost per City	Downtown Speed (mph)
1 (2)	Chicago IL	112 (102)	10%	\$2,063	\$7.5 B	9
2 (1)	New York City NY	102 (102)	0%	\$1,879	\$9.7 B	11
3 (5)	Philadelphia PA	101 (77)	31%	\$1,860	\$4.4 B	10
4 (3)	Los Angeles CA	87 (88)	-1%	\$1,602	\$8.6 B	17
5 (4)	Boston MA	83 (79)	5%	\$1,529	\$2.9 B	10
6 (6)	Miami FL	75 (74)	1%	\$1,381	\$3.5 B	14
7 (8)	Atlanta GA	75 (65)	15%	\$1,381	\$3.4 B	14
8 (7)	Houston TX	70 (66)	6%	\$1,289	\$3.8 B	14
9 (9)	Washington DC	70 (62)	13%	\$1,289	\$3.2 B	11
10 (10)	Seattle WA	68 (63)	8%	\$1,252	\$1.9 B	14
11 (12)	San Juan	68 (58)	17%	\$1,252	\$1.0 B	18
12 (11)	Nashville TN	65 (63)	3%	\$1,197	\$1.0 B	19
13 (13)	Baltimore MD	63 (48)	31%	\$1,160	\$1.4 B	12
14 (15)	Denver CO	51 (44)	16%	\$939	\$1.2 B	13
15 (14)	San Francisco CA	49 (46)	7%	\$903	\$1.4 B	10
16 (18)	Pittsburgh PA	51 (43)	19%	\$939	\$907 M	17
17 (17)	Stamford CT	53 (47)	13%	\$976	\$367 M	10
18 (20)	Charlotte NC	48 (41)	17%	\$884	\$987 M	16
19 (16)	Dallas TX	44 (41)	7%	\$810	\$2.7 B	14
20 (19)	Honolulu HI	49 (45)	9%	\$903	\$330 M	16
21 (23)	Austin TX	46 (39)	18%	\$847	\$807 M	14
22 (21)	Phoenix AZ	42 (39)	8%	\$774	\$1.5 B	20
23 (22)	San Antonio TX	43 (39)	10%	\$792	\$816 M	17
24 (26)	Tampa FL	41 (34)	21%	\$755	\$940 M	23
25 (24)	Portland OR	41 (38)	8%	\$755	\$740 M	14

Top 25 Busiest Corridors in the U.S.

For another year, Interstate 95 Southbound through Stamford, CT takes the top spot for the busiest corridor in the U.S. Busiest Corridor rankings for 2025. The stretch between Compo Road S and Indian Field Road resulted large traffic delays for travelers during the 8:00 AM commute hour in 2025. Taking that road every weekday during the peak hour would result in a driver losing about 133 hours to traffic congestion in 2025 alone, though this is slightly down from 2024 where drivers lost 150 hours traffic congestion.

While Northbound I-95 through that section took second place at 94 hours lost, other notables include the third-ranked Brooklyn-Queens Expressway in New York. Drivers on that corridor lost 93 hours to congestion at 4:00 PM last year alone. Orlando's I-4 Eastbound from Anderson Expressway to World Drive took fourth at 91 hours lost during the 5:00 peak hour, while the Bay Area's I-680 EB from Mission Boulevard to Scotts Corner came in at 90 hours lost at 4:00 PM.

Rank	Urban Area	Road Name	From	To	Peak Hour	Peak Travel Time	Hours Lost
1	Stamford, CT	I-95 SB	Compo Road S	Indian Field Rd	8:00 AM	59	133
2	Stamford, CT	I-95 NB	Indian Field Rd	Compo Rd S	5:00 PM	51	94
3	New York City, NY	I-278 WB	I-495 I'chng	Tillary Street	4:00 PM	28	93
4	Orlando, FL	I-4 EB	Andersen Expy	World Dr	5:00 PM	29	91
5	San Francisco, CA	I-680 EB	Mission Blvd	Scotts Corner	4:00 PM	29	90
6	Bridgeport, CT	I-95 NB	Sherwood Conn.	Sr 8	5:00 PM	36	89
7	Chicago, IL	I-55 SB	I-90 I'chng	Cicero Ave	4:00 PM	26	87
8	Boston, MA	I-93 SB	Causeway St	Pilgrims Hwy I'chng	3:00 PM	31	81
9	Miami, FL	Dolphin Expy	Palmetto I'chng	I-95	8:00 AM	27	81
10	Norfolk, VA	I-664 WB	I-64	Western Fwy I'chng	4:00 PM	34	77
11	Baton Rouge, LA	I-10 EB	N Lobdell Hwy	I-12 I'chng	4:00 PM	26	74
12	Los Angeles, CA	US-101 SB	Santa Monica Blvd	N Alvarado St	4:00 PM	20	73
13	Los Angeles, CA	Pomona Fwy EB	S Mednik Ave	I-605 I'chng	5:00 PM	24	72
14	Dallas, TX	US-80 EB	I-635	N Farm 548	5:00 PM	24	71
15	Atlanta, GA	I-285 SB	Chamblee Tucker Rd	I-20 I'chng	5:00 PM	28	71
16	Baltimore, MD	I-895 NB	Balt-Wash Prky	Hollander Ridge	4:00 PM	27	69
17	Los Angeles, CA	I-405 NB	US-101	Sherman Way	7:00 AM	18	67
18	Santa Cruz, CA	Cabrillo Hwy EB	Santa Cruz Hwy	State Park Dr	4:00 PM	21	66
19	Miami, FL	Palmetto Expy	Dolphin Expy	Hialeah Expy	5:00 PM	19	66
20	Tampa, FL	I-275 NB	Memorial Hwy	I-4 I'Chng	5:00 PM	21	65
21	Washington, DC	I-495 CCW	Clermont Ave	I-295 I'Chng	4:00 PM	19	64
22	Washington, DC	Anacostia Fwy NB	I-695 I'Chng	Maryland Border	4:00 PM	20	63
23	Dublin, CA	I-580 EB	Castro Valley Blvd	Livermore Airport	4:00 PM	35	63
24	Seattle, WA	I-405 NB	Renton	I-90 I'Chng	8:00 AM	21	61
25	Pittsburgh, PA	Forbes Ave NB	PA 885	Beechwood Blvd	5:00 PM	35	61

EUROPE ANALYSIS & RANKING

Across Europe, 282 (50%) urban areas of the 568 analyzed saw increased traffic delay over 2024, while 219 (39%) areas observed decreases in delay. The remaining 67 (12%) saw no significant change in delay over the prior year. Variation was present across EU countries in terms of delay. In 2024, a larger share of EU cities saw delays increase, indicating a slower growth rate traffic congestion.

Birmingham, U.K. is back in the top 25 at number 23 after gaining four spots, while The Hague, NL fell to number 27. Delays fell in London, U.K. and Paris, FR, some of largest and densest urban areas in Western Europe, yet the urban areas retained their 1st and 2nd ranking, respectively.

Changes in traffic delay varied across countries. For example, the vast majority of urban areas in Italy experienced increased delays, while just 16% of urban areas in France sat in traffic longer. Spain was more balanced, with 70% of urban areas experiencing more delay in 2025 over 2024.

2025 EU Rank (2024 EU Rank)	Urban Area	Country	2025 Delay per Driver (hours)	2024 Delay per Driver (hours)	YOY Change	Downtown Speed (mph)
1 (1)	London	UK	91	101	-10%	11
2 (2)	Paris	FRA	90	97	-7%	11
3 (3)	Dublin	IRL	95	81	17%	11
4 (4)	Rome	ITA	76	71	7%	13
5 (7)	Milan	ITA	67	64	5%	14
6 (5)	Brussels	BEL	71	74	-4%	10
7 (23)	Cologne	DEU	67	56	20%	16
8 (6)	Warsaw	POL	64	70	-9%	15
9 (10)	Berlin	DEU	60	58	3%	13
10 (8)	Rotterdam	NLD	60	63	-5%	15
11 (22)	Zurich	CHE	63	58	9%	16
12 (18)	Dusseldorf	DEU	63	60	5%	15
13 (15)	Amsterdam	NLD	57	55	4%	19
14 (11)	Bristol	UK	64	65	-2%	13
15 (19)	Budapest	HUN	58	55	5%	13
16 (16)	Manchester	UK	62	61	2%	13
17 (21)	Munchen	DEU	57	55	4%	11
18 (13)	Ljubljana	SVN	64	67	-4%	18
19 (12)	Utrecht	NLD	60	63	-5%	18
20 (9)	Prague	CZE	57	64	-11%	17
21 (25)	Stuttgart	DEU	60	58	3%	16
22 (14)	Leeds	UK	59	60	-2%	16
23 (27)	Birmingham	UK	57	54	6%	15
24 (20)	Lisboa	PRT	60	60	0%	11
25 (24)	Bath	GBR	68	68	0%	12

The United Kingdom

Traffic congestion got a bit of a reprieve in 2025 across the U.K., yet a significant number of urban areas grew, some by more than double-digits. Commuters in London received the most reprieve, as traffic delays fell 10% from 2024, to 91 hours lost due to traffic in 2025. Yet it remains that while London saw some traffic relief, it still sits atop the most-congested urban areas due primarily to its sheer size, economic power, and population density.

Cambridge and Rochester are newcomers to the top 25 list this year, with delays in both areas increasing 15%.

The typical driver in the U.K. lost 59 hours due to congestion, down three hours from 2024. This resulted in fewer economic losses due to traffic jams, as costs fell £49 to £822 per driver. Traffic congestion cost U.K. commuters an estimated £11 billion worth of lost time.

Light and heavy goods vehicle use [has remained significantly high since the COVID-19 pandemic](#). Since last year, heavy goods vehicle use remained flat, while car use ticked up 0.5% and light goods vehicle use jumped 5.2%. In all, transport use on all motor vehicles jumped about 1.5%.

On the public transport side, National Rail ridership surged 6.4% over 2024 levels, while buses but in and out of London fell by 2-3%. Tube use remained relatively flat in 2025.

United Kingdom Findings

- Time Lost: 59 hours lost, down 3 hours from 2024.
- Cost to Driver: £822 down £49 from 2024
- Cost to Country: £11.0 billion

2025 U.K. Rank (2024 Rank)	Urban Area	2025 Hours Lost (2024)	Delay Change	2025 Cost per Driver	2025 Cost per City	Downtown Speed (mph)
1 (1)	London	91 (101)	-10%	£1,252	£5.2 B	11
2 (2)	Bristol	64 (65)	-2%	£881	£191 M	13
3 (4)	Manchester	62 (61)	2%	£853	£219 M	13
4 (3)	Leeds	59 (60)	-2%	£812	£300 M	16
5 (6)	Birmingham	57 (54)	6%	£784	£420 M	15
6 (5)	Bath	68 (68)	0%	£936	£39 M	12
7 (19)	Cambridge	60 (52)	15%	£826	£49 M	12
8 (21)	Rochester	63 (55)	15%	£867	£26 M	15
9 (8)	Chelmsford	57 (59)	-3%	£784	£65 M	19
10 (10)	Edinburgh	51 (53)	-4%	£702	£177 M	15

Busiest Corridors in the U.K.

Due to the large share of the country's delay, it is not surprising London holds most of the top corridors for traffic delays in the UK. The busiest corridor was the A414 Westbound from Thieves Lane to Stanstead Road. At the 5:00 PM rush hour drivers lose about 27 minutes to traffic congestion, resulting in 68 hours lost in 2025 on this corridor alone. Other notables in Greater London also include the A219 Southbound, North Circular Road Eastbound, and Vauxhall Bridge Road Eastbound. No corridors during the morning commute pierced the top 10.

The M6 in Manchester between Stockport Road and the A556 was the busiest non-London corridor in the top 10, where at the 4:00 PM rush hour cost drivers about 48 hours in 2025 due to traffic jams.

Other U.K. cities round out the list, including corridors in Londonderry in Northern Ireland, Leeds, Hemel Hempstead and Birmingham.

Rank	Urban Area	Road Name	From	To	Peak Hour	Peak Travel Time	Hours Lost
1	London	A 414 WB	Thieves Lane	Stanstead Rd	5:00 PM	27	68
2	London	A219 SB	Fulham Palace Rd	Trinity Rd	5:00 PM	34	52
3	London	N Circular Rd EB	Falldoden Way	Bowes Rd	4:00 PM	18	49
4	Manchester	M6 SB	Stockport Rd	A556	4:00 PM	22	48
5	London	Vauxhall Bridge Rd EB	Victoria St	Peckham Hill St	5:00 PM	27	45
6	Londonderry	Clooney Rd WB	Maydown Rndbt	Messines Park	4:00 PM	24	44
7	London	Camden Road NB	Camden town	B152	4:00 PM	26	44
8	Leeds	Queens Rd CW	Bolton Rd	Great Horton Rd	3:00 PM	19	42
9	Hemel Hempstead	A414 WB	Phoenix Rndbt	The Plough Rndbt	5:00 PM	18	42
10	Birmingham	A441 SB	Belgrave Middleway	Watford Rd	4:00 PM	19	40

Germany

Delay grew across Germany, with greater than 20% growth in key urban areas like Cologne, Bremen and Leipzig. That growth pushed Cologne above Berlin as the most-congested urban area in the 2025 INRIX Global Traffic Scorecard ranking.

The average driver nationwide lost 47 hours to traffic, up four from 2024. This cost the typical driver in Germany 750 € in lost time, up 57 € from 2024. Further, the total loss of congestion is estimated at nearly 329 million hours to commuters across Germany.

Drivers in Cologne sat in traffic the most, with the typical driver in the urban area losing 67 hours due to traffic in 2025, up 20% from 2024's 56 hours lost. As a result, drivers lost the equivalent of 919 € in lost time, a 188 million € loss to the city as a whole.

The Capitol of Berlin fell from the top spot to number two, seeing a moderate three percent increase in delay to 60 hours per driver, though Berlin's size, economy and density result in 1.1 billion € in congestion costs.

Germany Findings

- Time Lost: 47 hours lost, up 4 from 2024
- Cost to Driver: 750 €, up 57 € from 2024
- Cost to Country: 5.3 Billion €

2025 DE Rank (2024 Rank)	Urban Area	2025 Hours Lost (2024 Hours Lost)	Delay Change	2025 Cost per Driver	2025 Cost per City	Downtown Speed (mph)
1 (4)	Cologne	67 (56)	20%	919 €	188 € M	16
2 (1)	Berlin	60 (58)	3%	823 €	1.1 € B	13
3 (2)	Dusseldorf	63 (60)	5%	864 €	193 € M	15
4 (3)	Munchen	57 (55)	4%	781 €	414 € M	11
5 (5)	Stuttgart	60 (58)	3%	823 €	188 € M	16
6 (6)	Frankfurt	55 (48)	15%	754 €	193 € M	16
7 (8)	Hanover	54 (47)	15%	740 €	144 € M	15
8 (7)	Hamburg	46 (44)	5%	631 €	418 € M	15
9 (11)	Bremen	49 (40)	23%	672 €	138 € M	15
10 (15)	Leipzig	46 (38)	21%	631 €	49 € M	15

Top 10 Busiest Corridors in Germany

In Germany, The busiest corridors tended to be spread across the country. In the Ruhr Region, Essen had the busiest corridor in 2025, where drivers on the A52 Eastbound from Heidendorf to the A40 lost about 42 hours to traffic jams. The A1 Northbound between the A57 and the A3 near Cologne ranked second with 36 hours lost in 2025. Berlin's Landsberger Allee ranked third with 36 hours lost.

Corridors in Germany tended to have less delay than those in the U.S. or the U.K. since the Scorecard began. While there are likely many reasons, pavement quality, design, and maintenance, likely play a key role in Germany's road performance.

Rank	Urban Area	Road Name	From	To	Peak Hour	Peak Travel Time	Hours Lost
1	Essen	A52 EB	Heidendorf	A40	4:00 PM	19.6	42
2	Cologne	A1 NB	A57	A3	4:00 PM	14.4	36
3	Berlin	Landsberger Allee EB	Friedenstraße	Markische Allee	3:00 PM	19.2	36
4	Stuttgart	A81 SB	A8	Hildrizhauser Str.	5:00 PM	18.3	34
5	Krefeld	A57 NB	A44	Krienshütte	3:00 PM	25	33
6	Ruhrgebiet	A2 EB	A516	A31	4:00 PM	11.2	27
7	Munchen	Landshuter Allee SB	B304	Arnulfstraße	4:00 PM	12.3	27
8	Krefeld	A57 SB	L398	A44	8:00 AM	15.8	27
9	Frankfurt	B8	A661	Maintal	4:00 PM	11	26
10	Berlin	A100 WB	A113	A111	4:00 PM	16.5	25

CONCLUSION & COMMENTARY

Traffic congestion around the globe grew in 2025. Sixty-two percent of urban areas analyzed had upward growth in delay, versus 55% in 2024. Delays generally rose across the U.S., Italy, and Germany, and Asia, while delays remained similar or less than 2024 levels in France, and U.K.

Some Western metropolises, like Los Angeles, Toronto, London and Paris, saw traffic delays recede, though all still remain some of the most-congested in their respective countries. The U.K. got a bit of a reprieve from traffic pain, as the typical driver gained three hours back from last year, to sit at 59 hours lost. As a result, the economic cost of delay shrunk £653 million to £11.0 billion. Delays in Germany, on the other hand, resulting in an 8% increase in economic costs to 5.7 billion €.

Traffic fatalities numbers improved enough to reduce the fatality rate to pre-COVID levels. For the last four to five years traffic fatalities increased significantly on U.S. roadways. Additionally, a lot of cities worked to reduce speed limits on city streets – New York continues their implementation of “Sammy’s Law,” aimed at reducing speeds and associated injuries and fatalities.

Transportation policymakers in the U.S. will soon have a surface transportation reauthorization bill to pass, and uncertainties lie in funding. Trade policy may also affect trucking in the U.S., noticeable by border crossing data by INRIX.

The most interesting takeaway was the absence of growth (and even recession) in delays in some major metros. More investigation is needed as to the cause, including population shifts, commuting and car ownership habits, and other economic and demographic data.

